
Human–Computer Interaction — INTERACT’99
Angela Sasse and Chris Johnson (Editors)
Published by IOS Press,c
 IFIP TC.13, 1999

1

Register-domain Separation as a Methodology for Development
of Natural Language Interfaces to Databases

Serge Sharoff & Vlad Zhigalov

Russian Research Institute for Artificial Intelligence, PO Box 111,103001,
Moscow, Russia.

fsharoff,zhigalovg@aha.ru

Abstract: Wider application of interfaces to access databases in natural language is hindered by the problem of
portability, i.e. customization of a general-purpose language-processing component to a particular database. In
this paper we propose a methodology which is based on a separation of the domain model of a database from the
register of database queries, i.e. a system of meanings employed by natural language for making queries. The paper
describes basic concepts of the domain model, the procedure required for tuning the parsing engine to a database
and the semantic-oriented approach for parsing queries. The described methodology is implemented as InBase, a
system which allows easy and efficient development of interfaces to arbitrarySQL databases.

Keywords: natural language, databases, portability, domain model, parsing, vocabulary content.

1 Introduction
A recent introduction to the field of natural language
interfaces to databases (NLIDBs) states that it is
no longer a fashionable topic of academic research
(Androutsopoulos et al., 1995). However, this still
does not undermine the practical importance of this
task, which is aimed at extraction of data from a
database using a natural language (NL) as the universal
medium for human communication instead of learning
a formal query language with its artificial and rigid
syntax. The second thing to be learned by a user is
the data model of a database: a user usually knows
a database problem domain, however, arrangement of
this knowledge in tables, attributes and values of a
corresponding (typically relational) database can be
completely strange. These two types of problems are
presented by a simple query in EnglishAverage salary
of managers in support services?which corresponds
to anSQL statement:

select AVG(Personnel.Salary)
from Personnel, Departments
where (Personnel.DeptID =
Departments.DeptID)
and (Departments.Name = ”Service”)
and (Personnel.Category ¡ 2)

Thus, structures of natural language expressions are
mapped intoSQL statements keeping the following
conventions:

� Keeping the formal syntax ofSQL, for
example, the averaging operation is expressed
asAVG(Personnel.Salary).

� Department names are not stored in the same
table as information on personnel (so the join
operation between two tables is necessary).

� The department of support services is stored
under the title ‘Service’.

� Categories of personnel are encoded by
integers; in particular, managers are denoted
by numbers 0 and 1.

All these conventions are hard to be kept in mind
for a computer-illiterate user. Often, command-line
interfaces, which input is based on a formal language,
are replaced by graphical user interfaces (GUIs). This
achieves both simplification of formal syntax (the
user chooses a respective label, likeAVG, from a
list of options) and simplification of data presentation
(data distributed over several tables are combined
in a single screen object). However,GUIs require
skills in interaction, thus constituting an interface
language, which sometimes is more tedious to use than
a formal language proper (in MS Access, for example,
formulation of the expressionAVG(Personnel.Salary)
requires a sequence of 15 mouse clicks and very

2 Human–Computer Interaction — INTERACT’99

deliberate choices from appeared options). On the
other hand, expression of queries in user-oriented
representations, like Seeheim model applications
(Olsen, Jr, 1992), (Wegener, 1995), is hindered by
contextual dependency of what user treats as objects
and their slots. For example, a country may be
treated as an object in such queries asWhich countries
supply products costing above twenty pounds?, while
the domain model treatsCountry as an attribute of
Supplier, which is an attribute of theProduct. In
contrast, the system of meanings encoded in natural
language with its relations and induced metaphors is
by far the most natural system of meanings for a na¨ıve
user.

By such reasons development ofNLIDBs
has been one of the most popular directions of
computational linguistics research since late sixties,
scored close to machine translation. However,
modern reviews of the state of the art, for example,
(Androutsopoulos et al., 1995), (Copestake & Sparck
Jones, 1990) admit thatNLIDBs are not wide-spread
and existing systems for development of them are
far from commercial applications. Obstacles for
wider application ofNLIDBs are partly related to the
principal incompleteness of existing technologies for
parsing queries (this is also related to the problem
of user’s false negative and positive expectations
about queries acceptable by the system). However,
portability issues are of the same importance, relating
to amount of efforts required for tuning a general
analyser to a particular database.

The technology described in this paper mostly
addresses the latter problem; it allows semi-automatic
creation of a simple interface to user’s database. In
several person-days or weeks this interface can be
improved to handle complex queries.

The basic design principles of InBase are
discussed in Section 2; Section 3 is devoted to
the Domain Model and its relation to the Database
Model; Section 4 describes operations required for
customization of InBase for a new database. Section 5
gives an overview of a parsing engine used for analysis
of NL queries. Throughout this paper, examples refer
to a database for the personnel of a sample company.
The database consists of two tables:Personnel and
Departments, first of which consists of attributes of
Name, BirthDate, HireDate, Post, Category, DeptId,
Sex, ChildNum, Marriage, Salary, Telephone. The
second table consists of attributes ofDeptId, Name,
Chief, Operations.

2 Design Principles of InBase
The need for a separation of the core processing engine
from the database-specific component is widely
accepted in design of modernNLIDBs (Alshawi,
1992). However, the core engine mostly deals with
syntactic analysis, which results are hard to map
into database query statements, thus increasing the
amount of efforts for customization. In contrast, the
core parsing engine of InBase operates in terms of
functions (language-oriented meanings) and follows
the notion of register, which, according to Halliday
(1978), describes a functional variation engendered by
language use in a problem domain, cf. an analysis
of the register of mathematics in Ch.11 of (Halliday,
1978). The register of the database queries differs
from a problem domain, which is represented by
a database: the register is a semiotic system of
functions and means, which express these functions.
Functions of the register of database queries include,
for example,Attribute, Value, Aggregate-Value, etc.;
configurations of functions arePredicate, Interval,
Class-Instance, etc. The notion of register in InBase
provides possibility to reuse semantic knowledge
expressed in linguistic structures across different
domains

Basically, tuning of the parsing engine of InBase
to a user’s database consists in development of a
vocabulary (which domain-dependent part is extracted
from the database automatically), mapping it onto
domain model resources, including functional classes,
which are included in the system, and testing for
a proper mapping of register-based functions into
database statements (the procedure is described in
greater detail in Section 4).

Methods for analysis of user’s queries also
follows the classification of functions using, in
the first place, semantic and pragmatic components
of the communication as well as its context,
instead of complete syntactic parsing of a query.
The background of this original semantic-oriented
approach (Narin’yani, 1980) is close to such
approaches as Wilks’ preferential semantics (Wilks,
1968), which was also applied to analysis of
database queries by Boguraev & Sparck Jones
(1981). So, instead of looking into syntactic
constructions and lexical meanings (thus slipping into
notorious problems like attachment of prepositional
phrases or meanings of nominal compounds), the
parsing engine determines “What function can be
denoted by this particular lexical item?”, “Which
configurations of functions are possible?” and “What
are linguistic constructions for their expression?”.
Another advantage of using functions is a greater

Register-domain Separation as a Methodology for Development of Natural Language Interfaces to Databases 3

congruence of their system across languages which
are even not closely related typologically (the work
reported in this paper has been done primarily for
Russian and English with experiments for French,
German, Georgian, and Czech, which happened to
have relatively minor differences in their registers of
database queries).

Analysis of a query results in a partial
specification of an object requested (cf. Figure 1).
Conceptually this partial specification is represented
as a typed-feature structure constraining a set of
objects that conform to this query. Structures of the
intermediate representation language (Q) for partial
specifications correspond to user’s expectations for
meanings encoded in the database.

From the user’s viewpoint, a retrieved set of
objects corresponding to this specification is either
presented as a list (using forms corresponding to the
class of retrieved objects and some conditions of the
query) or mapped into a value (when an aggregate
value, like averageor how manyis requested). A
value returned from an aggregate value can be used in
embedded queries, as in the query shown in Figure 1.

The Q-level corresponds to notions at the level of
problem domain and is independent from the internal
organization of a database. For example, it is natural
for the database to store the birth date, as a constant
value instead of person’s age, while in theNL-query
it is more natural to refer to this date from the current
moment perspective (Who is older than 40?instead
of Who was born earlier than 01/01/59?). A partial
specification in Q-language is translated into anSQL
query using joint operations for virtual attributes and
substitution rules for such values as ‘engineers’ (which
is a set of different positions) and ‘40 years’ using
information from the domain model of a database.

3 Domain Model
The core structure of a domain model (DM) in InBase
is based on entity-relationship diagrams (ERDs). A
DM consists of elements (including classes, attributes,
values of attributes), and relations between them.
Structural relations (the inheritance relation between
classes, the slot relation between a class and its
attributes) define a set of types of user’sDM; they
assemble entities in terms ofERD. Other relations
may be defined between entities; they are whole-
part and class-instance. The latter relation is of
particular importance in relational databases, since
often one table defines types (for example, goods) and
another one — instances (for example, sold items).
This distinction and its implications for the content
of a formal query are rarely understood by a na¨ıve

user (Who deals with spare parts?vs. Who sold
spare parts to John Smith?). The methodology for
DM development in InBase significantly differs from
otherDM methodologies, like (Prieto-Diaz & Arango,
1991) due to the static nature ofDMs in InBase.
SuchDM encodes only meanings pertaining to user’s
database, so it lacks some elements typical forCHI
DMs, like tasks and scripts for interaction.DMs in
InBase are represented using Resource Description
Framework,RDF (W3C, 1999). ThoughRDF was
designed as a language to describe meta-data of
Web documents, it captures all theDM semantics
necessary for the InBase. The Figure 2 shows the
ERD for our database and fragments of itsRDF-
description. Note that the classEmployee inherits
the classPerson, which belongs to the library of
InBase classes facilitating development of user’sDMs.
This class belongs to built-in classes, since data about
persons and their standard attributes (like name, age,
etc.) are often stored in databases andNL-queries
employ specific constructions referring to them, so this
knowledge facilitates understanding of such queries.
Other classes in this library are locations, units of
measurements, and so on.

Partially anERDmaps onto the relational schema
of a database (database tables correspond to classes,
and attributes to properties of classes). In many
cases, however, some semantically significant features
of the DM are not reflected in the database model,
and even in its content. For example, instances of
classesEmployee andChief are stored in a single table;
some attributes of the classEmployee are virtual; they
represent relations to other objects (Department is
stored in another table). The database model also
defines no relation between values ofEducation, but in
user’s terms, types of education constitute a scale, so in
order to answer such questions asWho has no higher
education?, the education scale should be modelled in
theDM. TheRDFrepresentation of the education scale
is the following:

<ib:Class ID=“Education”/>
<dm:Education ID=“Primary”/>

<dm:Education ID=“Secondary”/>
<dm:Education ID=“Higher Ed”/>
<dm:Higher Ed ID=“BA”/>
<dm:Higher Ed ID=“MS”/>
<dm:Higher Ed ID=“PhD”/>
<ib:Seq><dm:Primary/><dm:Secondary/>

<dm:Higher/></ib:Seq>
<ib:Seq><dm:BA/><dm:MS/><dm:PhD/>

</ib:Seq>

In SQL the condition:

Employee[Education < higher ed]

4 Human–Computer Interaction — INTERACT’99

Partial specification
List of objects

which conform
to partial

specification

Screen forms
(name, job)

Set of values
(count, salary)

NL-query

Class

A = V

A > V

A V}

1 1

2 2

3 3∈















{

Searching

Displaying

Mapping

Who has the maximum salary among engineers employed for more than 10 years.

EMPLOYEE

"
salary=MAX

salary

EMPLOYEE

"
jobtitle � ‘engineer0

dutyduration> 10years

#!#

Figure 1: The query processing scheme.

chief

department

employees

department

chief

subordinate

PERSON

SURNAME
NAME
BIRTH_DATE
AGE
MARRIAGE
CHILD_NUM

EMPLOYEE

TAB_NUMBER
POST
CATEGORY
EDUCATION
SALARY
TELEPHONE
DUTY_DURATION

CHIEF

DEPARTMENT

DeptID
Name
Chief
Operations

<!– EMPLOYEE class description –>
<ib:Class ID=”EMPLOYEE”>
<ib:subClassOf subClassOf=”PERSON”/>
<ib:relationTo class=”DEPARTMENT” type=”one” label=”department”/>
<ib:relationFrom label=”employees” resource=”EMPLOYEE” type=”many”/>

</ib:Class>

<!– AGE property description –>
<ib:Property ID=”AGE”>
<ib:range resource=”age”/>
<ib:domain resource=”PERSON”/>

</ib:Property>

Figure 2: The ERD for the sample DM and a part of its RDF description.

is represented using an ‘or’ clause:

(Education=”primary” or Education=”secondary”)

4 Customization
Customization of a newNLIDB consists in:

� Development of the domain model.

� Stuffing the vocabulary.

� Debugging the newly createdNLIDB.

TheDM is created from the relational schema of
the database semi-automatically; initiallyDM classes
with their properties are created from database tables.
Then the user can customize theDM by changing,

adding and deleting classes and properties and binding
them by relations (including virtual attributes, which
are linked to other tables). This procedure is facilitated
by inheriting classes from the library of predefined
classes. Also theNLIDB designer specifies rules for
presentation of objects retrieved by search. One more
type of information to be specified upon customization
is used for handling meta-questions about theDM,
for example, Which information is known about
employees? What are the possible job titles?

The content of the vocabulary of the constructed
NLIDB consists of three parts. The first part includes
the general-purpose lexicon, which forms the initial
vocabulary content of any L-processor (list, find,
more than, not, except, average,etc., approximately

Register-domain Separation as a Methodology for Development of Natural Language Interfaces to Databases 5

600 words). The second part, which is also the
largest one, is extracted automatically by scanning
the database. Such words and phrases are added to
the vocabulary as values with corresponding semantic
descriptions referring to attributes of theDM classes
(‘orientations’ of words). The third part of the lexicon
is formed during theNLIDB tuning stage and consists
of words specific for the database problem domain.
This includes words and phrases referring to attributes
(salary, wage, date of issue), synonyms to values taken
from the database (for example,woman for female
denoting sex in the database).

New words to the vocabulary are also added from
the built-in vocabulary in the course of customization,
when built-in classes and their attributes are added to
user’sDM. For example, adding a class inheriting the
classPerson results in a prompt for adding specific
lexical items referring to possible attributes of a human
being (who, name, born, sex,etc.); presence of dates in
theDM adds names of months and rules for assembling
complex dates (during November 25–29), and so on.

Another type of information to be specified
for the vocabulary of InBase is rarely addressed in
NLIDBs, but is often encountered in applications.
These are regular expressions (templates), which
do not belong to a lexicon, but are meaningful
in a problem domain. Examples of templates are
standard identifiers (ISBN 0–465-05154–5), telephone
numbers, which may be expressed in several ways:
255 4530, 255-4530, or 2554530, etc. Regular
expressions for templates and their orientations are
defined automatically by scanning the database.
Additional templates and rules for their conversion to
a standard representation stored in user’s database are
added upon customization.

Reliability of the created NLIDB and
completeness of its lexicon are evaluated by the
designer issuing test queries, which may be collected
in a special list to save user’s time for typing typical
queries. A screen shot of InBase processing a query is
shown in Figure 3.

5 Analysis of Queries
The parsing engine of InBase operates in terms
of the register of database queries using entities,
their attributes, values, and relations between entities
as defined in the DM. In itself the parsing
engine is implemented in a special language for
development of L-processors,SNOOP (Sharoff,
1993), which integrates object-oriented approach with
network representations and a production rule control
mechanism, so entities of the domain model inSNOOP
are represented as nodes of a semantic network.

According to the semantic-oriented approach
(Narin’yani, 1980), lexical semantics of words and
phrases at the surface level is represented by the
‘orientation’ referring to a number ofDM concepts
that could be related to these words, for example,
date in this database has two orientations: birth and
hire dates. Several types of semantic units that
appear in queries (attributes, values, comparisons,
etc.) are combined into semantic structures on the
basis of their orientations (so a date in a predicate
with a value larger than 01/01/1980 in this database
receives the only orientation of a hire date). Also
analysis uses information about semantic classes, for
example, existential predicates (likehas children,
without higher education) are interpreted according
to types of their arguments (respectively, a numerical
attribute, which value is greater than zero, or a non-
numerical value, which represents a sequence).

Morphological and syntactic analyses are locally
involved in cases of structural and semantic ambiguity,
for example, local syntactic analysis is used for the
recovery of ellipsis, when comparative and coordinate
constructions are processed. The local top-down
syntactic procedure may be supported by the bottom-
up analysis in the case of more than one candidate
for the role of the noun phrase nucleus. Detection
of syntactic relations (government and agreement) is
useful for solving the problem of the influence region
of the negation, degree/modality modifiers, and certain
locative units in elliptic constructions. Application
of this technology to understanding of short texts
and representing their domain model is described in
(Kononenko & Sharoff, 1996).

6 Conclusion
The principles of the semantic-oriented analysis
used in InBase have been developed by the end
of 70s (Narin’yani, 1980), when severalNLIDBs were
developed manually. These experiments have led
to InterBASE, a prototype system for development
of NLIDBs to dBase-type databases in Russian and
English (Narin’yani, 1991), (Trapeznikov et al.,
1993). The system presented in this paper has
extended capabilities of InterBASE by achieving a
proper separation between the register and the domain
model. Now the system operates with arbitrarySQL-
access databases using the Borland Database Engine
in Microsoft Windows. Currently the parsing engine
of InBase has some evident limitations:

� A static world model, it has no support
of databases designed to store information
about changes (Tansel et al., 1993), temporal

6 Human–Computer Interaction — INTERACT’99

Figure 3: Data access in natural language.

databases require extensions in domain and
linguistic models.

� No dialogue handling, the system answers to
queries separately, being not able to resolve
anaphoric links (likeHas he a PhD?following
the question in Figure 1).

� No handling of complex quantification (in such
queries asIn which departments every employee
has higher education?).

� Results are presented in tables or screen forms
(no NL-response generation component).

These limitations are topics for further
developments. An advantage of the proposed
technology is that it allows rapid development of
NLIDBS by an inexperienced user and robustness of
analysis. As Palmer & Finin (1990) note, evaluation of
anNLP system is based on complex criteria, primarily
involving its success in accomplishing user’s goals.
Despite of evident gaps in parsing, InBase addresses
much of the real questions arising in interaction with
databases. Experiments with several databases show
that our interfaces analyse more than 85% of queries.
Even in the case of false understanding the finalSQL
representation of a query provides a feedback which
helps in detection of an error in analysis, so that either
the sourceNL query or itsSQL representation can be
corrected to improve results of analysis. Alterations
of the DM and the vocabulary of theNLIDB provide
a way to reduce this error for further queries. The
crucial questions for application of computational
linguistics to HCI are: “For what and under what
conditions isNL access effective for interaction of
the end user with computer?”.NLIDBs enable the end

user with easy and efficient access to data stored in a
database without mastery in artificial query languages
and knowledge of precise relations between its tables.
At present, our abilities in modellingNL features used
for information delivery are inadequate for complete
and correct understanding of all user queries. By this
reason, the methodology adopted in InBase is based
on customization of the general-purpose system of
functions to theDM of a particular database.

One of the most promising research directions
in NLIDBs is an interface to voice processing.
The semantic-oriented approach described in this
paper facilitates voice recognition, since in speech
a syntactic norm is often violated, morphological
information contained in flexions is missed during
recognition, semantically insignificant words are
not stressed, so they are often recognized with
errors. Because theDM is represented using
object notions, another research direction for InBase
consists in development of interfaces to object-
oriented DBMSs; this also helps in mapping the
intermediate representation language to a database
query language.

Access to WWW using NL queries as a
prospective extension of this technology would
dramatically increase precision and recall ratios in
comparison to keyword-search facilities offered by
the modern search engines.NL interface for a
restricted problem domain can analyse a query taking
into account its topic, such linguistic relations as
synonymy, part-whole, generic-specific, and so on,
in order to search documents withRDF-meta-data
conforming to the content of the query.

Register-domain Separation as a Methodology for Development of Natural Language Interfaces to Databases 7

References
Alshawi, H. (1992),The Core Language Engine, MIT Press.

Androutsopoulos, I., Ritchie, G. & Thanisch, P. (1995),
“Natural Language Interfaces to Databases: An
Introduction”, Natural Language Engineering
1(1), 29–81.

Boguraev, B. & Sparck Jones, K. (1981), A General
Semantic Analyzer for Database Access,in
EDITOR* (ed.), Proceedings of the Seventh
International Joint Conference on Artificial
Intelligence (IJCAI’81), p.***PAGES***.

Copestake, A. & Sparck Jones, K. (1990), “Natural
Language Interfaces to Databases”,Knowledge
Engineering Review5(4), 225–49.

Halliday, M. (1978), Language as a Social Semiotic:
The Social Interpretation of Language and Meaning,
Edward Arnold.

Kononenko, I. & Sharoff, S. (1996), Understanding Short
Texts with Integration of Knowledge Representation
Methods,in D. Bjorner, M. Broy & I. Pottosin (eds.),
Perspectives of System Informatics, Vol. 1181 of
Lecture Notes in Computer Science, Springer-Verlag,
pp.111–121.

Narin’yani, A. (1980), Interaction with a Limited Object
Domain — ZAPSIB Project,in ***EDITOR*** (ed.),
Proceedings of COLING-1980, ***PUBLISHER***,
p.***PAGES***.

Narin’yani, A. (1991), “Intelligent Software Technology
for the New Decade”,Communications of the ACM
34(6), 60–7.

Olsen, Jr, D. R. (1992),User Interface Management
Systems: Models and Algorithms, Morgan-Kaufmann.

Palmer, M. & Finin, T. (1990), “Workshop on the
Evaluation of Natural Language Processing Systems”,
Computational Linguistics16(3), 175–81.

Prieto-Diaz, R. & Arango, G. (1991),
“Domain Analysis and Software Systems
Modeling”, IEEE Computer Society Press
VOLUME (***NUMBER***), ***PAGES***.

Sharoff, S. (1993), SNOOP: A System for Development of
Linguistic Processors,in Proceedings of the East–West
Conference on Artificial Intelligence, pp.184–8.

Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A. &
Snodgrass, R. (1993),Temporal Databases — Theory,
Design, and Implementation, Benjamin/Cummings
(Addison–Wesley).

Trapeznikov, S., Dinenberg, F. & Kuchin, S. (1993),
InterBase: A Natural Language Interface System
for Popular Commercial DBMSs,in Proeedings of
the East–West Conference on Artificial Intelligence,
pp.189–93.

W3C (1999), Resource Description Framework (RDF)
Model and Syntax Specification, Technical Report,
W3C. http://www.w3.org/TR/PR-rdf-syntax.

Wegener, H. (1995), The Myth of the Separable
Dialogue: Software Engineering vs. User Models,
in K. Nordby, P. H. Helmersen, D. J. Gilmore &
S. A. Arnessen (eds.),Human–Computer Interaction
— INTERACT’95: Proceedings of the Fifth IFIP
Conference on Human–Computer Interaction,
Chapman & Hall, pp.169–72.

Wilks, Y. (1968), “On-line Semantic Analysis of English
Texts”,Machine Translation11(3-4), 59–72.

Human–Computer Interaction — INTERACT’99
Angela Sasse and Chris Johnson (Editors)

Published by IOS Press,c
 IFIP TC.13, 1999

8

Author Index

Sharoff, Serge, 1 Zhigalov, Vlad, 1

Human–Computer Interaction — INTERACT’99
Angela Sasse and Chris Johnson (Editors)
Published by IOS Press,c
 IFIP TC.13, 1999

9

Keyword Index

databases, 1
domain model, 1

natural language, 1

parsing, 1
portability, 1

vocabulary content, 1

