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Abstract
This paper presents an open-source toolkit for predicting human post-editing efforts for

closely related languages. At the moment, training resources for the Quality Estimation task
are available for very few language directions and domains. Available resources can be ex-
panded on the assumption that MT errors and the amount of post-editing required to correct
them are comparable across related languages, even if the feature frequencies differ. In this
paper we report a toolkit for achieving language adaptation, which is based on learning new
feature representation using transfer learning methods. In particular, we report performance
of a method based on Self-Taught Learning which adapts the English-Spanish pair to produce
Quality Estimation models for translation from English into Portuguese, Italian and other Ro-
mance languages using the publicly available Autodesk dataset.

1. Introduction

A common problem with automatic metrics for Machine Translation (MT) evalua-
tion, such as BLEU (Papineni et al., 2002), is the need to have reference human transla-
tions (Specia et al., 2010). Also such metrics work best on a corpus of segments, while
they are not informative for evaluation of individual segments. The aim of Quality
Estimation (QE) is to predict a quality score for a segment output by MT without its
reference translation, for example, to predict Translation Edit Rate (TER), i.e., the dis-
tance between the raw MT output and its revised human output (Snover et al., 2006).

From the implementation viewpoint, the QE task can be framed as a regression
problem aimed at predicting the amount of human TER, without the reference trans-
lations available. This helps in deciding whether an MT sentence can be a suitable
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basis for human Post-Editing (PE) or it would be better to translate this sentence from
scratch. The QE methods mostly rely on supervised Machine Learning (ML) algo-
rithms aimed at computing similarity scores between a source sentence and its ma-
chine translations using a variety of sources of information, which are used as features
to train a supervised ML algorithm to predict QE scores. Specia et al. (2013) devel-
oped QuEst, a baseline QE framework, which uses simple features quantifying the
complexity of the source segment and its match to the machine translation output.

However, currently existing training datasets are only available for a limited num-
ber of languages. For example, in the WTM’15 QE task the available pairs were en-es
and en-de,1 which have been evaluated on the same domain (news). The end users of
MT need a wider variety of language pairs and domains for evaluation. So far there
has been little research to deal with this problem. Turchi and Negri (2014) proposed
an automatic approach to produce training data for QE in order to tackle the problem
of scarce training resources. Specia et al. (2010) used baseline QE framework across
different domains and languages (i.e. en-es to en-dk). In our earlier work (Rios and
Sharoff, 2015) we proposed using Transfer Learning (TL) for a training dataset from
the WMT’14 QE task to predict PE labels, i.e., ‘Perfect’ vs ‘Near miss’ vs ‘Low quality’.

In this paper, we describe the implementation of a transfer-based QE workflow to
produce a large number of QE models for predicting the TER score by utilising the
notion of relatedness between languages. More specifically, we use TL to learn better
feature representations across related languages. Our intuition is that sentences with
similar quality scores are near-neighbours in terms of QE features across related lan-
guages. In other words, good or bad quality sentences translated into Spanish (i.e.,
available training data) show similar characteristics to sentences translated into Por-
tuguese (i.e., unlabelled data). This makes it possible to train a prediction algorithm
by sharing information from the available labelled dataset with unlabelled datasets for
related languages. However, to achieve reasonable prediction rate we need to adapt
the feature representation for the dataset for the unlabelled language pair.

In this paper, we will present the Self-Taught Learning (STL) approach (Section 2),
discuss the experimental setup (Section 3) and the implementation details of our tool-
kit (Section 3.3). We will also describe the dataset and analyse the results (Section 4).

2. Transfer Learning Methods

Transfer Learning aims to transfer information learned in one or more source tasks,
i.e., using labelled datasets, to improve learning in a related target task without new
annotations, i.e., using unlabelled datasets (Pan and Yang, 2010).

From the viewpoint of notation, the transfer models start with l labelled training
examples {(x1, y1), (x2, y2)..., (xl, yl)} anduunlabelled training examples {z1, z2, ..., zu}.

1Throughout the paper we will be using the two-letter ISO codes to indicate the languages

2



M. Rios, S. Sharoff Language Adaptation for Quality Estimation (1–12)

The labels belong to a set of labels Y for the classification task or they are real-valued
numbers for the regression task.

2.1. Self-Taught Learning

Raina et al. (2007) propose a semi-supervised transfer learning method, which
does not assume that the unlabelled dataset is drawn from the same distribution as the
labelled one. The unlabelled data is used to learn a lower dimensional representation
of the input features. With this representation the labelled data can be used to learn
a prediction model in the lower dimensional space, which better fits the unlabelled
dataset.

Formally, the steps to perform STL are defined as:
1 Learn the dimensionality reduction for the unlabelled set zi.
2 Compute a new representation for the labelled training dataset xi.
3 Use standard classification/prediction methods with the new training dataset
f(x̂i) = yi.

The dimensionality reduction in our case is based on autoencoders. The autoen-
coder uses backpropagation to learn mapping the inputs to their own values via a
hidden layer. The method learns an approximation function hW,b(z) ≈ z similar the
identity function, where W are the weights and b the bias. In Step 2, the labelled
training data xi is transformed by using the same parameters from the autoencoded
unlabelled data ẑi. The new representation of the training data x̂i is used to learn a
prediction model in Step 3. The size of the lower-dimensional space is given by the
number of units in the hidden layer. The STL model can be expanded to take into
account several unknown signals, such as language pairs or domains.

Stacked autoencoders can perform a series of transformations of a labelled dataset
given different autoencoders learned on several unlabelled datasets. In other words,
each autoencoder is a layer Ln where the output of one autoencoder L1 becomes the
input of the following autoencoder L2. For example, a two layer model has parameters
(W,b) = (W1, b1,W2, b2) for two stacked autoencoders.

3. Methodology

In this section, we describe the QE features and the transfer learning setup.

3.1. Features

The QE features come from information about the source sentence, its MT output
and information about relations between them. The QuEst framework (Specia et al.,
2013) implements 17 language-independent features classified into three types:
Complexity Indicators Features related to the difficulty in translating the source sen-

tence, such as, the number of tokens of the source sentence, its language model
and average number of translations in the phrase tables.
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Fluency Indicators Features related to how fluent the MT output is, such as the lan-
guage model of the target sentence.

Adequacy Indicators Features related to how much meaning is preserved in the MT
output, such as, ratios of tokens between the source and target, ratio of punctua-
tion and syntactic similarity. The QuEst framework also uses features related to
a specific decoding process when available, such as, global score of the system
and number of hypotheses in the n-best list.

In addition, we use a second set of features based on bilingual embeddings (Her-
mann and Blunsom, 2013), i.e., words and sentences from the source and target lan-
guages are positioned in a shared multidimensional representation, which assumes
that words and sentences from one language are neighbours with words and sen-
tences with similar meanings from another language. The motivation for introducing
embeddings is to expand the range of Adequacy indicators using simple resources.
The bilingual embeddings are induced from parallel data from the target domain.
We build each sentence as an additive composition of individual word vectors. The
final vector is a concatenation of vectors from the source sentence and its machine
translation. The final embedding vector for the experiments consists of 200 features.

3.2. Implementation Details

Texts in related languages are treated as unlabelled data. For example, the avail-
able en-es labelled dataset is used to transfer information into the unlabelled en-pt
sentences to predict their QE scores. We compare the transfer-based QE workflow
that uses Self-Taught Learning (STL) against the Baseline with no transfer. There de-
veloped workflows can tackle both QE scenarios: the prediction of HTER and the
classification of post-editing effort.

For all the HTER prediction workflows we use the Support Vector Regression (SVR)
algorithm with the RBF kernel from scikit-learn (Pedregosa et al., 2011). The hyperpa-
rameters C and ϵ have been determined analytically following (Cherkassky and Ma,
2004): ϵ = 3σ(y)

√
ln(n)/n andC = mean(y)+3σ(y)where y is HTER in the training

set, σ is the standard deviation, n is the number of observations.
For STL we modified the autoencoder implementation from Theano (Bergstra et al.,

2010). The STL model first finds the weights W,b from the unlabelled zi dataset
by training a sparse autoencoder. Second, the model produces a modified training
dataset by using the unlabelled weights on an second autoencoder. The modified
training dataset is a lower-dimensional representation of the input features. A new
test dataset can be predicted by using the weights W,b to represent the data points
into the same lower-dimensional space. However, we do not have access to any devel-
opment datasets for tuning the zi autoencoder for our unlabelled language pairs. For
the parameter selection of the unlabelled autoencoder, as suggested in Bergstra and
Bengio (2012), we run a random search over a split of the modified training dataset
(90% training, 10% validation) in order to find: the size of the hidden dimension, the
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desired average activation sparsity parameter (ρ), the weight decay parameter (λ) and
the sparsity penalty (β).

The stacked STL setup can be used for language pairs where the source is different
form the available training dataset. For example, the training dataset is en-es and
the objective test is fr-es. The first autoencoder is trained with en-fr and the second
autoencoder with fr-es, which projects training en-es first into the space of en-fr, and
then into fr-es.

In addition to STL, we also experimented with other TL strategies, namely multi-
view learning and Transductive SVM. The multi-view learning framework tries to
jointly optimise different views of the same input (Xu et al., 2013). Spectral methods
such as Canonical Correlation Analysis (CCA) can be used to learn a subspace shared
by label and unlabelled data. The Spectral method is straightforward to apply to two-
view data. In our case, the first view is the labelled data xi and the second view is the
unlabelled data zi. CCA learns two projections AmϵRl×m where l are the labelled
instances and m the number of features, and BmϵRu×m. We use Am to project each
instance of the test dataset into x̂i. For the Spectral Learning setup, we use the CCA
implementation from MATLAB2 and the same SVR setup as for STL. For example,
the available dataset is en-es and the test objective en-pt. We use CCA to learn the
projections of en-es and en-pt. The en-es test is projected into the same lower space
with Ai, and then, we use the projected datasets for training and testing respectively.

The methods described above can be used in different QE scenarios by changing
from SVR to SVM. In particular for the classification of post-editing effort, Transduc-
tive Support Vector Machine (TSVM) takes into consideration a particular test dataset
and tries to minimise errors only on those particular instances (Vapnik, 1995). The
TSVM model learns a large margin hyperplane classifier using labelled training data,
but at the same time it forces that hyperplane to be far from the unlabelled data,
and the method transfers the information from labelled instances to the unlabelled.
We use SVMlin3 for training the TSVM. TSVM uses an Linear kernel with no hyper-
parameter optimisation. We select the heuristic Multi-switch TSVM. Each instance in
the unlabelled dataset is added to the training dataset. For classification, we imple-
ment the one-against-one strategy, and the final decision is given by voting.

The standard QE baseline measures HTER prediction without any adaptation, i.e.,
the en-es QE prediction model is applied to en-pt data.

For the regression scenario, we report the Mean Absolute Error (MAE), Root Mean
Squared Error (RSME) and Pearson correlation. Our main evaluation metric is the
Pearson correlation as suggested in Graham (2015).

2http://uk.mathworks.com/help/stats/canoncorr.html

3http://vikas.sindhwani.org/
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3.3. QE Transfer Command Usage

In this section, we show the different implemented methods for transfer-based QE.
The repository contains the scripts for extracting the features and implementations of
transfer-based QE methods, where each transfer workflow uses the same input pa-
rameters. The first step of the transfer-based workflow is to extract features for: the
labelled dataset, the unlabelled and test datasets. For the feature representation, we
have available two feature extractor scripts. The QuEst feature extractor that depends
on QuEst4 and Moses. The bilingual embeddings feature extractor that depends on
BICVM5.

The next step is to train and predict the test dataset. We developed different QE
adaptation tools based on transfer-learning such as: STL, stacked STL, CCA all for
regression and classification, and TSVMy for classification. The final and optional
step is to measure the predicted HTER against a gold-standard annotation of the test
dataset.

In addition, we implemented the analytical method to estimate the parameters ϵ

and C of the SVR, where the input is the training examples features.
Preliminary results show that STL outperforms other transfer learning methods

over both regression and classification. We show the use of the STL transfer method
given the QuEst baseline features. The input parameters of the adapted QE based on
STL with SVR for HTER prediction are: (1) training examples features, (2) training la-
bels, (3) unlabelled training examples features, (4) test features, (5) output, (6) epsilon
parameter for SVR, (7) C parameter for SVR and (8) size of hidden layer for the au-
toencoder. Parameters (6)-(8) will be determined as discussed above if not provided
explicitly. An example of the command is as follows:

python stlSVR.py \
--training-examples autodesk.training.en-es.feat \
--training-labels autodesk.training.en-es.hter \
--unlabelled-examples autodesk.training.en-pt.feat \
--test autodesk.test.en-pt.feat \
--output autodesk.en-pt.pred \
--epsilon 41.06 \
--c 0.232 \
--hidden-layer 50

The default parameters for the autoencoder have been selected via random search
over a split on the labelled language dataset. It is worth noticing that we do not con-
straint the number of hidden units during the learning of the autoencoder. Thus, we

4http://www.quest.dcs.shef.ac.uk/

5https://github.com/karlmoritz/bicvm
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set a bound for random search from 0 to 100 units, and for our example the optimum
number of units has been detected as 50.

4. Experiments

In this section, we describe the datasets used to train and evaluate our transfer
learning model for pairs of related languages. We show the results of the STL transfer-
based QE and we also discuss the predicted scores for different language pairs.

4.1. Dataset

In this paper, we experimented with the Autodesk PE dataset (Zhechev, 2012).6
The Autodesk corpus contains the source, MT and PE segments for several languages.
The corpus consist of user manuals, marketing and educational material for the Au-
todesk applications, such as AutoCAD, REVIT, Inventor. We use the following lan-
guage pairs showed in Table 1, with a 70/30% split for the training/test data.

Language
Pair

Training
Labelled

Training
Unlabelled Test

en-es 24,073 - 8,025
en-pt - 28,886 9,629
en-it - 30,311 10,104
en-fr - 38,469 12,824
en-ru 30,905 - 10,302
en-cs - 20,997 7,000
en-pl - 24,853 8,285
fr-es - 10,000 1,000
it-es - 10,000 1,000
pt-es - 10,000 1,000

Table 1. Autodesk training and test number of segments used in this study.

We use as labelled training data en-es for the Romance family and en-ru for the
Slavonic family. The remaining language pairs were used as unlabelled and test data
for each family. Given that the Czech dataset is much smaller, it has been only used
for tuning/testing. The unlabelled set has been produced by running the remaining
English segments not included in the en-cs set through Google MT.

The QE score (HTER) is the minimum number of edit operations (TER) between
the MT output and PE. We use Tercom (Snover et al., 2006) to compute the HTER
scores between the post-edited and MT segments.

6https://autodesk.app.box.com/v/autodesk-postediting
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We produce the pt-es, it-es and fr-es language pairs by intersecting the English
segments. For example, the same English segments present in en-pt and en-es pro-
duces the pt-es alignment for both MT and PE. For extracting the QuEst features, we
use Moses (Koehn et al., 2007) and KenLM (Heafield, 2011) with a 3-gram language
model (LM).

4.2. Results

In this section, we show the results of our proposed STL QE workflow against the
standard QE Baseline. We built the transfer-based QE and baseline models for the
language directions in Table 2.

Training
labelled

Test
unlabelled

en-es en-pt, en-it, en-fr
pt-es, it-es, fr-es

en-ru en-cs, en-pl

Table 2. Language directions workflows.

The upper bound for our TL methods is the standard QE setup in which the same
feature set is used for training and testing on the same language pair, en-es and en-ru
in our case (Table 3).

Training
en-es en-es

Upper baseline
MAE 0.14
RSME 0.18

Pearson 0.53
Training

en-ru en-ru

Upper baseline
MAE 0.18
RSME 0.27

Pearson 0.47

Table 3. Upper-bound baseline for labelled language pairs.

Table 4 shows the transfer results for the workflows. Over the Romance pair we can
see consistent and considerable improvement over the baseline with no adaptation,
e.g., 0.35 → 0.52 for correlation in the case of en-es→en-pt TL, which approaches the
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Training
en-es en-pt en-it en-fr

STL
MAE 0.14 0.16 0.17
RMSE 0.17 0.21 0.22

Pearson 0.52 0.40 0.30

Baseline
MAE 0.16 0.18 0.18
RMSE 0.20 0.23 0.23

Pearson 0.35 0.26 0.24
Training

en-ru en-cs en-pl

STL
MAE 0.19 0.19
RMSE 0.25 0.25

Pearson 0.41 0.46

Baseline
MAE 0.20 0.21
RMSE 0.26 0.27

Pearson 0.32 0.33

Table 4. Transfer learning results.

upper baseline of 0.53 for training and testing on the same language pair (en-es). For
the Slavonic language pairs we also reach the upper baseline for the en-pl pair.

Training
en-es pt-es it-es fr-es

STL
MAE 0.18 0.18 0.18
RSME 0.23 0.22 0.22

Pearson 0.19 0.23 0.21

Stacked
STL

MAE 0.20 0.58 0.24
RMSE 0.25 0.62 0.30

Pearson 0.07 0.06 0.02

Baseline
MAE 0.19 0.19 0.18
RSME 0.23 0.24 0.22

Pearson 0.14 0.17 0.10

Table 5. Transfer learning results with en-es training into test: pt-es, it-es and fr-es.

Table 5 shows the transfer results across the Romance language pairs. The training
is en-es and we adapt to pt-es, it-es and fr-es.

Table 6 shows the transfer-based results and the Baseline for comparison between
more distant languages. As expected, the performance of TL is much lower between
non related languages, i.e., no useful adaptation is taking place.
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Training
en-es en-cs en-pl

STL
MAE 0.22 0.25
RMSE 0.29 0.32

Pearson 0.08 0.11

Baseline
MAE 0.23 0.22
RSME 0.31 0.29

Pearson 0.11 0.09

Table 6. Transfer learning results with en-es training into test: en-cs and en-pl.

The features of the source and target directions affect the results of the transfer
methods, i.e. complexity, fluency and adequacy indicators. For example, in the case of
STL adaptation from en-es to pt-es, there is no agreement between the features of the
source languages (en vs pt, complexity indicators) given they are not closely related,
but the target languages are closely related. However, when the source languages are
the same (en-es → en-pt) and the target languages are closely related, i.e. the fluency
indicators can be transformed, the overall performance improves nearly up to the level
of the labelled (upper-bound) pair baseline.

In addition to RMSE and correlation scores, there is a danger that adaptation can
produce a narrow range of predicted values in comparison to the test set. We analyse
the results of transfer by presenting the range of HTER predicted scores at (10%, 90%)
quantiles, i.e. by trimming 10% of the most extreme values, which are likely to contain
the outliers.

The (10%, 90%) quantile range for en-es → en-pt is as follows: Gold (0.0, 0.53), STL
(0.23, 0.46) and Baseline(0.16, 0.47). The spread of the STL predicted values is slightly
less than the baseline. For the stacked STL a possible reason for the low performance
is related to over-fitting. The range for en-es → pt-es is: Gold (0.0, 0.57) and Stacked
STL (0.50, 0.50). A better configuration of en-es → pt-es with the the stacked STL can
be: en-es (training), es-pt (first layer) and pt-es (second layer). The motivation is to
find an agreement between the source and the target features with the addition of
more closely languages in terms of the induced lower dimensional space.

5. Conclusions and Future Work

We present an open-source toolkit7 for transferring QE features from a single train-
ing dataset to closely related languages via Self-Taught Learning. We also developed
other transfer learning methods for the task of QE prediction. It has been found suc-
cessful in prediction the PE operations on the Autodesk dataset for the Romance and
Slavonic families. For the reasons of testing the method the language pairs involved in

7https://github.com/mriosb08/palodiem-QE

10

https://github.com/mriosb08/palodiem-QE


M. Rios, S. Sharoff Language Adaptation for Quality Estimation (1–12)

the experiment do have suitable training resources. However, such sizeable datasets
are rare. Even the Autodesk set only covers three Slavonic languages, while only Ger-
man is available for the Germanic languages in this set.

One possibility for further research concerns the expansion of the available la-
belled resources with adaptation to different domains in addition to the language fam-
ilies, for example, by transferring predictions from the original domain of the Au-
todesk PE set to other domains with only unlabelled data available.
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