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Introduction
1.1 RATIONALE FORWORKINGWITH COMPARABLE

CORPORA
The ability of the computers to handle larger amounts of texts and the availability of more texts in
electronic form led to the rise of data driven research in computational linguistics. In the case of
Machine Translation (MT) and other kinds of multilingual Natural Language Processing (NLP), the
first source of large data came from collections of translations, initially in the Statistical MT (SMT)
approach from IBM [Brown et al., 1990], which was based on the Proceedings of the Canadian
Parliament in English and French as their data source. This research direction was followed by a
proliferation of SMT models, which relied on larger and larger collections of parallel data, which
consist of exact translations between a pair of languages or several languages at the same time.

However, this early research also demonstrated the limits of using fully parallel corpora, with
the most pressing initial concern on the amount of such data [Fung, 1998, Rapp, 1995]. This led to
another strand of studies concerning the use of less parallel sources of texts, usually under the name
of comparable corpora [Sharoff et al., 2013]. This book will present an overview of the modern
approaches to building and using comparable data in multilingual NLP.

We will start by outlining the basic principles of using comparable resources as well as by
comparing them to fully parallel resources (this chapter). This will be followed by specific chapters
on building comparable corpora (Chapter 3), aligning their sentences to find a database of suitable
translations (Chapter 4), using these corpora to produce dictionaries and termbanks (Chapter 5), to
build MT engines (Chapter 6) and to use them in other applications (Chapter 7).

1.1.1 AVAILABILITY OF TRULY PARALLEL DATA
The first limitation in the use of parallel corpora comes from the process of their production. For
truly parallel corpora we need to collect texts that have been carefully translated by highly trained
professional translators [Massey, 2017]. Many more people produce monolingual texts in their na-
tive languages in comparison to output of a small number of trained translators. Also there is an
imbalance in the amount of translations produced for a relatively small number of major languages,
primarily for the languages of the United Nations or the EU, while there are thousands of languages
with very minor resources. Less resourced languages can still benefit from parallel resources. How-
ever, statistically speaking, language can be described as a large number of rare events in the sense
that an individual word or expression is relatively infrequent, but the totality of rare events con-
tributes to the mass probability of words and expressions in a text [Baayen, 2008]. This creates
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problems of sparsity even for better-resourced languages. For example, the word unicyclist occurs
84 times in 2 billion words of a monolingual English ukWac corpus [Baroni et al., 2009], i.e., about
once per 23 million words in ukWac, with no examples of this word in the English parts of large
publicly available parallel corpora such as Europarl [Koehn, 2005] or the United Nations corpus
[Ziemski et al., 2016].

Another constraint on corpus data concerns the availability of translation products, as it is
easier to obtain translated texts produced by large public bodies, such as the European Parliament
or the United Nations than many other kinds of translations. This bias leads to many word choices,
which are specific with respect to the genres and topics available in such corpora. For example,
there are 75 occurrences of the expression strong voice in Europarl, all of which are used in the
sense of political authority, for example, ensuring that smaller Member States retain a strong voice
in the decision-making procedures. At the same time, out of the 28 occurrences of this expression
in the British National Corpus [Aston and Burnard, 1998] 19 examples refer to the quality of hu-
man voices, for example, She had a good, strong voice – an actor’s voice. When translating strong
voice into other languages, the political authority metaphor needs to be explicitly unpacked, because
the literal translation is not suitable. For example, when translating strong voice into Russian, the
political sense is likely to use reshitelno vystupatj (‘to express assertively’) or goryacho osuzhdat
(‘to condemn vehemently’) as opposed to the straightforward literal translation gromkij golos (‘loud
voice’). In the end, the mismatch between the domains and genres of parallel corpora and the target
applications can lead to errors, which might be corrected by the use of less parallel resources.

1.1.2 TRANSLATIONESE IN PARALLEL DATA
Another kind of problems concerning the use of parallel data comes from a particular phenomenon
known as translationese, namely a difference between features of translated texts and texts originally
produced by native speakers [Koppel and Ordan, 2011]. Translationese is caused by factors inherent
in the translation process, such as explicitation [Frankenberg-Garcia, 2009], i.e., the need to provide
more information in the translated text for what remains implicit in the source text. For example,
translations tend to use more cohesive markers, such as therefore, however, nevertheless, in compar-
ison to original texts by making the logical relations more explicit in translation [Koppel and Ordan,
2011]. Other factors leading to translationese are related to the temporal and cognitive pressures on
the translation operations, as the translators need to complete their tasks in a short period of time.
This leads such phenomena as (1) normalisation, i.e., the tendendency to re-use stock expressions
of the target language even when the source text deviates from the norm, and (2) “shining-through”
[Rubino et al., 2016], i.e., the influence of the syntactic and lexical choices stemming from the source
texts even when other choices are common in monolingually produced texts in the target languages.
In the end it has been shown that translationese effects have statistical significance leading to the abil-
ity to build fairly accurate classifiers detecting texts translated by humans [Rabinovich and Wintner,
2015], even in an unsupervised fashion [Riley et al., 2020].
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From the viewpoint of the translation direction, there is always a source text which needs
to be translated into other languages, so only one text in a parallel corpus is primary, while other
texts exhibits features of translationese. At the same time, when parallel corpora are used for MT
applications, this directionality of translation is usually ignored, so that the Slovenian→ English
MT built from the Europarl corpus uses slightly unnatural Slovenian texts exhitibing features of
translationese as its source texts. These aspects call for the greater use of texts originally produced
in the respective languages.

Table 1.1: Adena culture example

en The Adena culture was a Pre-Columbian Native American culture that existed from 800 BC
to 1 AD, in a time known as the Early Woodland period.

de Adena-Kultur ist die Bezeichnung für eine im mittleren Ohio-Tal ansässige prähistorische
Indianerkultur. Sie lässt sich für die Zeit von etwa 1000 v. Chr. bis 200 n. Chr. nachweisen.

fr La Civilisation Adena était une culture pré-colombienne amérindienne ayant existé de l’an
1~000 à l’an 200 avant J.-C., durant l’ère connue sous le nom de Période sylvicole.

ja アデナ文化（Adena）は、アメリカ合国オハイオ州を中心に1000B.C.から元前後に
えた文化。アデナ文化は、初期（ないし前期）ウッドランド期（Early Woodlannd
Period）の文化として位置付けられ、アデナ文化の出によって、後のホプウェル
文化をはじめとするウッドランド文化の先となるウッドランド式土器や丘墓、ト
ウモロコシ耕のすべてがでそろった。

ru Êóëüòóðà Àäåíà � äîêîëóìáîâàÿ èíäåéñêàÿ àðõåîëîãè÷åñêàÿ êóëüòóðà, ñóùå-

ñòâîâàâøàÿ â ïåðèîä 1000�200 ã. äî í. ý., â ïåðèîä, èçâåñòíûé êàê ðàííèé

Âóäëåíäñêèé ïåðèîä.

1.2 LEVELS OF COMPARABILITY
These constraints on the availability and the use of parallel data led to numerous studies utilising
less parallel resources. This research direction generally goes under the name of ‘comparable cor-
pora’. However, it is important to note that there is no clear dividing line between fully parallel and
comparable corpora, as multilingual resources vary with respect to the degree of linking between
documents in the two languages. Consider some examples of documents along the cline of compa-
rability:

translations identifiable originally produced source texts and their translations.

truly parallel true high quality translations, such as the proceedings of the European Parlia-
ment.

modified parallel translations with some modifications to cater for the target audience. For
example, language-specific descriptions of the Search dialogue box in the OpenOffice
manual are translations from English with necessary modifications, such as searching
for New York is replaced with searching for Berlin in the German version.
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adaptations translators exhibit freedom in rendering the source text, as it is the case with
many of the fan-produced subtitles as in the OpenSubtitles corpus [Tiedemann, 2012]

strongly comparable closely related texts produced in several languages.

Wikipedia entries entries on exactly the same topic are linked across languages via iWiki
links, see Table 1.1, with individual entries varying in the amount of information.

news items very specific events are covered by numerous news agencies in various languages.
Often the same agency reports the same story in various languages without fully relying
on their translation, see the BBC News in English and Spanish.

weakly comparable similar texts which cannot be directly linked to each other across languages,
while still being in the same domain and genre, for example:

• texts in the same narrow subject domain and genre, but describing different events,
e.g. parliament debates on health care from the German Bundestag, the British House
of Commons and the French parliament;

• texts within the same broader domain and genre, but varying in subdomains and spe-
cific genres, e.g. parallel queries in the renewable energy domain mostly returning
wind energy research articles in English vs solar panel producers in Russian [Sharoff,
2013].

unrelated collections of unrelated texts, which are nevertheless collected using comparable meth-
ods from comparable sources. For instance, this concerns the use of random snapshots of the
Web for Chinese, English, German and Russian [Sharoff, 2006] or the use of filtered Common
Crawl data [Wenzek et al., 2019] with the assumption that different cultures use the Web for
broadly similar purposes.

Further on in the book we will refer to collections of documents on this comparability scale
as parallel, strongly comparable, weakly comparable and unrelated corpora.

1.3 METHODOLOGY FOR DEALINGWITH COMPARABLE
RESOURCES

Even though there is no clear dividing line between parallel and comparable resources, there are two
clearly distinct ways of using such resources, which focus on the amount of translation information
present in each resource.

The first approach assumes the possibility of obtaining very local information which can link
two languages through splitting corpora into small translation units, which are supposed to convey
the same meaning in both languages. Usually this is done on the sentence level. This is the classic
case of training Machine Translation (MT) engines, as MT naturally assumes a high level of paral-
lelism as the starting point. This can be also considered as a fully supervised model of translation.
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The second approach assumes building global multi-dimensional spaces for the entire set of
linguistic phenomena in each language to determine the similarity between them. This is the classic
case of using comparable resources for dictionary induction, the phenomena in this case are words
or other kinds of dictionary entries. As usual in computational linguistics there are many studies
blending the local and global approaches.

Irrespectively of choosing the local or global approach to using corpora, we need to determine
ways of measuring similarity. Modern approaches usually rely on the Vector Space Model (VSM),
which uses a numerical vector x to represent any entity, such as a word, a phrase, a sentence or
a link between entities. If a VSM assign similar vectors to entities, which are translations of each
other in the respective languages, this shared space can be the basis for identifying translations via
comparable corpora. We will start with an introduction into the basic principles of building cross-
lingual VSMs, see Chapter 2, and then we will proceed to methods for utilising these spaces, first
for finding similar documents, see Chapter 3, then for finding translations on the sentence level, see
Chapter 4 and finally for bilingual dictionary induction on the word level, Chapter 5. The shared
VSM space is also a natural starting point for developing Machine Translation engines with no or
with limited parallel data, see Chapter 6.

The utility of comparable corpora goes beyond applications in translation. As the amount of
resources required for training NLP tools for text annotation, document classification or retrieval
is limited in many languages, it is possible to achieve low-resource NLP via few-shot or zero-shot
models. This means an NLP model can be trained for a low-resource language with very few or
even no annotated examples in this language provided that we have a sufficient number of annotated
examples in another (donor) language and that we have comparable corpora for both languages.
Methods for making cross-lingual predictions in this context are discussed in Chapter 7.
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C H A P T E R 2

Basic principles of cross-lingual
models

When we start working across languages, we need to determine ways of measuring similarity of
entities (such as a word, a phrase, a sentence or a link between entities) within each language and
across languages. Modern approaches usually rely on the Vector Space Model (VSM), which uses a
numerical vector x of a specified dimensionality D to represent any entity. The entities are similar
when their vectors are not too far apart.

2.1 MONOLINGUAL VSMS
Early VSM approaches [Salton et al., 1975] constructed these vectors in an intuitive model by com-
puting the strength of association between entities. For example, a word can be represented as a vec-
tor of other words it co-occurs with. The values of these vector can be either normalised frequencies
of co-occurences or some kinds of collocation scores in a window of a certain size [Manning and
Schütze, 1999]. Table 2.1 lists example vectors for three words moon, Sun and zebra.1

Table 2.1: Examples of word vectors in an association matrix

crescent cross full giraffe half hot ibm moon rise see shine stripe sun
moon 9.3 0.0 8.2 0.0 7.9 0.0 0.0 0.0 6.8 3.3 7.6 0.0 10.5
sun 0.0 0.0 5.3 0.6 0.8 8.7 8.3 10.5 8.1 4.1 11.1 0.0 0.0
zebra 0.0 13.6 0.0 9.3 0.0 0.0 0.0 0.0 0.0 0.7 0.0 11.8 0.0

Each row of this matrix M stores the Point-wise Mutual Information scores [Church and
Hanks, 1990] for the collocates:

PMI = log
p(w1, w2)

p(w1)p(w2)
(2.1)

where p is the probability of seeing words w1, w2 or their collocation “w1w2” in this corpus. The
PMI value is assumed to be zero if p(w1, w2) is zero, i.e. if the two words do not co-occur in a
specific window, the distance of three words in either direction was chosen for computing this table.

This similarity of vectors implies the similarity of meanings according to the hypothesis of
distributional similarity, You shall know a word by the company it keeps, as originally formulated
1The frequencies have been taken from the British National Corpus [Aston and Burnard, 1998], which was compiled in the begin-
ning of the 1990s. This timeframe leads to the specific Sun-IBM collocation.
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by Firth [1957], see also [Harris, 1954, Turney and Pantel, 2010], i.e., semantically similar words
are likely to have similar vectors of co-occurences.

A VSM representation of this kind is interpretable, as one can see how words are related to
each other via their collocations, so that we can see the conditions under which words are similar, for
example, we can see that moon and sun share a number of collocates, and under which they differ,
because the collocations apply to one of the senses but not to others. For example, some collocations
are specific to one sense of sun (hot, moon, rise, shine), while others are specific to another sense,
such as its collocation with IBM for the computer company sense of Sun, as in the BNC example
offered neither by Sun nor IBM.

Even though the model is easily interpretable, its application creates a problem with the num-
ber of dimensions in the co-occurrence vector, because the vector for each word needs to include all
words selected as possible collocates for every other word in this corpus. This becomes intractable
in a large corpus with a lexicon easily exceeding several million words, while the matrix of colloca-
tions will be the square of this size. Depending on how aggressively one reduces the number of the
most important keywords (this definesD, the dimensionality of each row in matrix M), the number
of keywords in a large corpus is nevertheless likely to exceed 100,000. This is still not practical, as
there are many issues associated with high-dimensional spaces, such as the curse of dimensionality
and hubness, when some entities are more likely to become closer to a large number of other entities,
thus polluting the usefulness of similarity estimates. The likelihood of such problems rises with the
number of dimensions [Radovanović et al., 2010]. At the same time, the matrix is very sparse, as
most of its values are zeros. For example, zebra does not co-occur with most of the collocates of
moon and sun, while it adds its own set of collocates giraffe, stripe, and cross (the last collocate
comes from the sense of zebra crossing). In the end, the vector for zebra is similar to vectors for
other animals and their properties (giraffe and stripe), as well as to various concepts related to the
transport infrastructure (from its sense of zebra crossing/ ), which in turn have very few collocations
shared with moon.

A VSM space can be compressed to a denser representation by keeping only a smaller number
of dimensions d << D which still retains most of the variation available in the full matrix of co-
occurrences. A simple way to achieve this is by using the Singular Value Decomposition of matrix
M = UΣVT [Rapp, 2004] to derive a low-rank approximation matrix Md such that:

Md = UΣdV
T (2.2)

in which only the largest d singular values of Σ are retained. The commonly used value of d is
between 50 and 500. Another popular approach for building dense VSM spaces is Random Seman-
tic Indexing (RSI), see [Sahlgren et al., 2008], which also avoids the problem of making a direct
SVD transform on a co-occurrence matrix with millions of dimensions. Performing either SVD or
RSI produces non-sparse vectors of a reasonable number of dimensions, which simplifies many
operations in this vector space. However, the downside is that the resulting dimensions no longer
interpretable.
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The neural approach to building VSMs is similar to the collocation-based approach except
that it replaces the need of counting the co-occurrences with predicting their probability. If we take
a very large set of examples in which one word has been removed, such as

Examples 2.1 shine of the . . . . upon the harbour

Examples 2.2 light of the . . . . shining between clouds

it is possible to recover the most likely masked word with a certain degree of precision, for example,
for (2.1) and (2.2) this is likely to be either moon or sun. Therefore, we can learn dense vector
representations (called embeddings in the neural approach) which assign similar vectors to words
which can be used in similar contexts. For example, the initially random vectors for sun and moon
through this training are becoming similar, because their embedding vectors are trained to predict
similar contexts, such as full, rise or shine. From a random initialisation state, a neural network is
trained to learnmore suitable embedding vectors for the respective words with backpropagation from
the masked word prediction task. For the best results we need to adjust the schedule of presenting
words (to balance the frequency effects) and to choose the rate of negative examples, i.e. words not
occurring in the chosen context by randomly inserting them into the empty slot. Randomly chosen
words will either violate grammatical constraints or offer unreasonable contexts:

Examples 2.3 shine of the APPLY|BLOOD upon the harbour

More formally, we can build word embedding representations by modeling the probability of
seeing a word in the context ofm other words:

p(w, c1:m) =
1

1 + e−
∑
w·ci

where the function is the sigmoid, which assumes the probability close to 1 for real corpus exam-
ples and the probability close to 0 for negative examples. We can find the best vectors w and c to
match the probabilities for the positive and negative examples by using the Stochastic Gradient De-
scent algorithm, see Chapter 10 in [Goldberg, 2017] for more information on the training process.
Learning representations rather than counting co-occurrences usually leads to better generalisation
capabilities of the neural embedding models in comparison to the count-based ones [Baroni et al.,
2014].

The beauty of neural methods is that embedding representations can be learned on the lev-
els of words, sentences, paragraphs or documents, thus providing vector representations, which are
suitable for many downstream tasks, so that embeddings can be used for Machine Translation, text
classification, natural language inference or part-of-speech tagging. The objective of learning suit-
able embeddings aims at producing similar vectors (i.e. close with respect to their distance in the
VSM space) for words, sentences, etc, when they are used in similar contexts, therefore similar em-
bedding vectors are assumed to be similar in meanings. The common practice is to use embedding
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VSMs with around 300 dimensions for word embedding models (same as with SVD or Random Se-
mantic Indexing), rising to around 1000 dimensions for sentence or paragraph embedding models.

sun

moon

zebra

giraffe

star

soleil

étoile

lune

girafe

zèbre

Figure 2.1: Example of aligned word spaces

2.2 CROSS-LINGUAL VSMS

Creating VSMs that can encode multiple languages is very useful in a multilingual context. The
VSM spaces can be either built in a way which creates them shared across several languages, or
two VSM spaces from unrelated comparable corpora can be aligned post-hoc, for example, by using
a seed dictionary or merely identical tokens, such as numbers or punctuation marks. In the case
of post-hoc alignment, the two independent VSM representation spaces are transformed with the
objective of allocating the seed dictionary elements as close as possible in this aligned space.

We can use comparable corpora in building VSM representationss if we can find a way of
aligning the VSMs for several languages, which means obtaining similar vector representations for
similar entities (words, constructions or sentences) across languages. Figure 2.1 shows word vectors
for several English words (moon, sun, giraffe, zebra) and the related French words (lune, soleil,
girafe, zèbre) according to the aligned word embeddings of fasttext [Bojanowski et al., 2017], as
obtained after reducing the dimensionality of the d = 300 fasttext vectors to a two-dimensional plot
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via a t-SNE transformation [Van der Maaten and Hinton, 2008]. We can determine that the closest
French word to sun in this space is soleil, which helps in inferring their semantic similarity.

2.3 CONTEXTUAL EMBEDDINGS
One of the problemswith traditional vector spacemodels is the need to represent themeaning of each
word as a single vector. Such examples as sun and zebra show that the assumption that words with
similar vectors have similar meanings is often difficult to satisfy. Many words have very different
meanings in different contexts, so that the embedding for sun needs to be close to both moon and
IBM at the same time, while this is not true for its likely French translation soleil.

A way of representing the way how the embeddings for words are combined together to pro-
duce meanings in their contexts is offered by means of connected layers of mathematical objects
called artificial neurons (they are called neurons because their design was inspired by biological
neurons, even though the objects themselves and their networks are usually quite different from the
biological neurons). Three relevant architectures here are (1) Recurrent Neural Networks (RNNs),
which model how much the embedding for the next word adds to the embedding vector obtained
from the preceding words, (2) Convolutional Neural Networks (CNNs), which model patterns of
co-activation of word embeddings irrespectively of their order, and (3) Transformers, which model
the so called attention mechanism, i.e. how words influence each other. For example, for a sentence
like

Examples 2.4 The food was amazing, but the service left something to be desired.

the transformer builds attention links between words, such as the objects and their properties, e.g.,
food and its quality. The weights for combining word embeddings in all of these architectures are
estimated by means of back-propagation of errors in a classification task, i.e., the weights are opti-
mised to reduce the classification loss errors using such algorithms as Stochastic Gradient Descent.
The principles behind neural architectures and their training are introduced in far greater details in
[Goldberg, 2017].

Contextual embedding models, such as ELMO or BERT, combine the mechanism of training
word embeddings to predict masked words, such as in Examples (2.1) or (2.2) with the mechanism
of neural networks which model how words can influence each other. For example, in the case of
BERT, the transformer model is pre-trained on a large corpus (such as Wikipedia) to predict masked
words or whether a sequence of two sentences is real or not. This pre-trains the weights for attention
links from a very large raw text corpus without any explicit annotation. The attention links which
can be detected as the outcome of this translating can already predict many kinds of syntactic and
semantic relations, for example, subject-verb agreement, even without any explicit training [Rogers
et al., 2020]. The weights can be later “fine-tuned" to a downstream task by training on a downstream
corpus, for example, the sentiment of the whole sentence or evaluation of its specific properties, such
as food or service [Pontiki et al., 2016].
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The weights in each layer of the pre-trained transformer models determine how the embed-
dings for individual words are modified dynamically for each example. In the end, the embedding
for Sun in the upper layer of this architecture when used in a context like offered neither by Sun nor
IBM will be different from the embedding the same token in the same layer when used in a context
like alignment of the Sun, Moon and Earth. The pre-trained transformer models started with BERT
[Devlin et al., 2019] and this was later followed by a family of models, such as Roberta [Liu et al.,
2019] or Distilbert [Sanh et al., 2019].

Even in the absence of truly parallel corpora or any dictionary seeds (as used for producing
the representations like Figure 2.1, pre-trained language models can achieve a good degree of par-
allelism through unsupervised methods, as they detect inherent parallelism in the distribution of
frequencies of words and constructions via sharing the weight parameters [Conneau et al., 2020,
Pires et al., 2019]. For example, if we take Wikipedia corpora for English and French and set the
task of predicting the masked words for a number of sentences like

Examples 2.5 Consult the TABLE beam sizes below vs
Vous pouvez consulter le TABLEAU des rémunérations des professeurs
‘you can consult the TABLE of the salaries of the teachers’

where the capitalised TABLE and TABLEAU are the masked words, the resulting embedding rep-
resentations for many words in the lexicon will be sufficiently close to their relevant translations in
another language, even though the sentences themselves are not parallel translations.

In the remaining chapters of this boook, we will show how representations of this kind are
useful to predict the similarity of documents, sentences and words across languages, as well as to
build MT and other applications.

We want to stress here that the majority of methods for building multilingual VSMs rely on
comparable corpora with the most successful recent methods relying on unrelated comparable cor-
pora. Nevertheless, to understand which models are more successful than others we need to under-
stand how comparable their pre-training corpora are. For example, the multilingual BERT is trained
on Wikipedias, while XLM-Roberta is trained on the multilingual Common Crawl corpus [Wen-
zek et al., 2019]. Sharing parameters in their pre-training comes from the comparability of their
underlying corpora, which we are going to investigate in the forthcoming chapters.


